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INTRODUCTION

Figure 1a shows an example of one category of data 
we frequently see in general aviation (GA) accident 
analysis. This is a histogram of fatal accident counts for 
instrument-rated pilots of GA aircraft1 as a function of 
pilots’ total flight hours (TFH).2 The data reflect actual 
U.S. National Transportation Safety Board accident data 
from 1983-2000, inclusive (NTSB, 2011).

It is not hard to appreciate the usefulness of a modeling 
function here. Such a function would smooth the noise 
in the data, allowing investigators to better predict how 
many pilots of a given experience level are likely to be 
involved in accidents over a given time period. This would 
be useful, for instance, in allocating resources for pilot 
training, or as the basis for a statistical covariate of flight 
risk. Even a casual glance at Figure 1 shows that policy 
makers would want to focus on pilots having fewer than 
5000 TFH, simply because there are far more accidents 
in that range. The question is how to get beyond the 
considerable noise in the data to arrive at more precise 
estimates of this kind.

1“GA aircraft” are defined here as “all N-tail-numbered aircraft 
operating in the U.S. under all Federal Aviation Regulations (FAR) 
Parts except 121 and 135, regardless of airframe type or weight.”
2Total flight hours includes all flight time logged at the controls of 
all aircraft, regardless of aircraft class or category.

METHOD

Choosing a modeling function
Ideally, we like modeling functions to be motivated 

by theory about causal processes inherent to our data. 
However, in the case of aviation risk, we cannot expect 
these processes to be few or simple.

Three major processes influence the GA accident rate, 
two of which have their own set of sub-processes.
1. Processes that affect the number of pilots at different 

values of TFH.
a. GA flight is expensive, both in time and money, 

plus, it takes time to accumulate flight hours. Hence, 
we expect that many pilots will have relatively few 
TFH, with ever-diminishing numbers of pilots as 
TFH increase. 

b. Pilots accumulate TFH at different rates, which may, 
themselves change, depending on the season of the 
year, employment situation, the pilot’s economic 
and social circumstances, and whim. 

c. Commercial pilots (those who fly as paid profes-
sionals) who also fly GA aircraft have their com-
mercial hours included in their TFH. U.S. National 
Transportation Safety Board (NTSB) data confirm 
that commercial flying is statistically safer than GA 
flying.3 So, for these pilots, high TFH does not 
imply proportionately higher risk.

3Several hundred people are regularly killed each year in GA, a fatal 
accident rate about 40 times greater than large commercial passenger 
air carriers such as United, Delta, and American Airlines (source: 
www.ntsb.gov).

Figure 1. Frequency histogram of a) fatal accident count (y-axis) for instrument-rated GA pilots as a function of total flight hours 
(x-axis, bin size=100), b) the same data with a natural log-transformed x-axis.
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d. Pilots constantly enter and leave the pilot popula-
tion at independent rates, due to economic factors 
and/or old age. 

e. Pilots leave one data collection category and enter 
another, when obtaining a new category of pilot 
license or certification (e.g., getting an instrument 
rating). 

2. Processes that affect each individual pilot’s flight risk. 
a. Pilots differ in innate, average skill. 
b. Flight risk tends to be low when pilots are students, 

to increase when they first begin to fly solo, then to 
decrease after they gain experience (Craig, 2001).

c. Some aspects of flight tend to be more danger-
ous, for example takeoffs, landings, night flights, 
and flights in or near severe weather. The type of 
flight a particular pilot typically engages may differ 
from another pilot, which will have an affect on 
the exposure to these more dangerous maneuvers. 
For example, a pilot who typically makes shorter 
flights will have more takeoffs and landings per unit 
time period than a pilot who typically flies longer 
cross-country flights. Therefore, TFH will never be 
a perfect proxy for risk.

3. Finally, in some particular data (e.g., those of Figure 1), 
pilots are included who were passengers having little 
or nothing to do with the cause of the accident itself.4

Given such complexity, we might despair at trying to 
model these kinds of data. Then again, as George Box 
observed “All models are wrong, but some are useful” 
(Box & Draper, 1987, p. 424). Perhaps we can begin 
with seeing if any modeling function can fit these data. 
If so, then we can at least make useful predictions about 
expected accident rates, even though these may not be 
purely theoretic.

In the present work, we proceed with this restricted goal, 
using a standard technique of minimizing least-squares 
residuals between actual data and a simple model involving 
just two component functions. The first component will be 
a simple log-transform. The second will involve that class 
of particularly useful modeling functions, the probability 
density functions (pdfs) based on the natural logarithm e. 
These enclose an area of 1.0 under their curves, making 
them useful in statistical analysis (Spanier & Oldham, 
1987). That class includes the Gaussian (normal), Poisson, 
log-normal, Weibull, beta, and gamma pdfs.

4Data source: NTSB downloadable aviation accident database www.
ntsb.gov/avdata/. Obviously, some readers may object to including 
pilots who were not directly responsible for the accident. However, 
bear in mind that we are merely describing an analytical method here, 
not trying to support specific theoretical statements about accident 
causation. Moreover, a previous study conducted by the author indicate 
that about 90% of GA accidents involve single-pilot flights, where 
there is no dispute over responsibility.

To illustrate such functions, let us single out the gamma 
pdf (G

pdf
). This is a 2-parameter function with a shape pa-

rameter α > 0 and a scale parameter b > 0. Gamma pdfs have 
been used to model a wide variety of processes, including 
the size of insurance claims (Hogg & Klugman, 1984), 
amounts of rainfall (Chiew, Srikanthan, Frost, & Payne, 
2005), waiting times and mean-time-to-failure (where it 
represents time until the αth event in a constant-hazard 
model), and distributions of microburst wind velocity 
(Mackey, 1998). Since the GA pilot population arguably 
consists of a number of sub-populations, some having 
an accident rate being a function of pilot experience and 
numbers of pilots—both perhaps inversely related to 
TFH—Gpdf

 is a logical function to test. 
The basic G

pdf
 is represented as a function of x (TFH), 

α (alpha), and b (beta)

( ) ( )α
ββα

ααβ

Γ
=Γ

−−− 1

,; xex
x

pdf
 (1)

with the gamma function G(α) itself described as the 
Euler integral of the second kind, defined for α > 0

 
  dtet t




0

1  (2)

Figure 2 shows the behavior of G
pdf

 with several differ-
ent parameter values. We can easily imagine that such a 
function could be fitted to our kinds of data.

Given our data, a number of practical issues arise:
1. The characteristically long tail of the raw data results 

in a very poor fit to any kind of pdf.
2. A location (shift) parameter will be required, since 

TFH does not start at zero for instrument-rated pilots.
3. An amplitude term will be required to scale the unit 

pdf, whose area under the curve is 1.0, to the binned 
data, whose area under the curve is much greater.

4.	Gpdf
 should rightfully be tested alongside other plausible 

candidate distributions.
5. Once we arrive at a preferred fitting function, methods 

should be described regarding:
a. Estimation of starting values for constrained pa-

rameter search
b. Goodness of fit with the original data
c. Calculation of selected confidence intervals
d. Quantizing the area under the function

Issue 1 suggests a very simple approach, namely, a 
compressive transform of the x-axis. Indeed, a natural-
log compression might prove suitable for “shrinking the 
tail,” to make the raw data of Figure 1a look more like 
something found in Figure 2.
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Issues 2 and 3 are purely practical. A location parameter 
d	(delta) will overcome the problem of non-zero initial 
data values, while an amplitude term (A) will scale the 
area under the pdf to our data. 

These modifications of Equation 1 lead to the test-
able form:

( ) ( )α
βδβα

ααβδ

Γ
−=Γ

−−−− 1))(ln( ))(ln(,; xeAx
x

pdf

 

Issue 4 requires empirical testing of a reasonable 
set of candidate pdfs (Winkelmann, 2008). Given the 
nature of the data, we can immediately rule out some 
candidates.5 For instance, a quick glance at Figure 1a 
shows that a symmetrical distribution (e.g., Gaussian) 
obviously cannot fit our data. Additionally, we probably 
want a function capable of representing overdispersion 
(variance > mean) or underdispersion (variance < mean). 
That would rule out the Poisson, where the variance can 
only equal the mean. 

Given these considerations, gamma, log-normal, 
Weibull, and beta pdfs remain as logical candidates. Because 
closed solutions do not exist for finding optimal parameter 
values to such functions, numerical methods must be 
used. These present their own challenges, as we shall see.

For this study, the NonlinearFit function of Math-
ematica 7.0 (Wolfram, 2008) was 
used for parameter estimation. For un-
constrained parameters, NonlinearFit 
offers a range of standard numerical 
methods (e.g., Newton-Gauss, quasi-
Newton, Levenberg-Marquardt). For 
constrained parameters, where start-
ing and/or final parameter values at 
time t are forced to lie within some 

5During review of this paper, one reviewer asked about the negative 
binomial function. This was also tested but eliminated due to frequent 
optimization failure.

range p
min

<p
t
<p

max
, a method such as Karush-Kuhn-Tucker 

(KKT) is preferable.
An alternative approach might be to use a method like 

simulated annealing, guaranteed to find a global mini-
mum (Kirkpatrick, Gelatt, Vecchi, 1983; Černý, 1985). 
However, such methods are computationally intensive 
and slow, providing little additional benefit, provided 
we show prudence in our method.

Finally, Issue 5 suggests finding a method for mapping 
the area under the fitting curve into quantiles, say at 10% 
intervals. For the time being, let us postpone that discus-
sion until after we settle on a single fitting function and 
gain some experience in seeing how that function behaves.

The test data
Four candidate model classes were tested: beta, gamma, 

log-normal, and Weibull pdfs. These were fitted to eight 
U.S. GA pilot data sets, described in Table 1. The data sets 
spanned two time periods (1983-2000 and 2001-May 15, 
2011), two categories of injury (Serious vs. Fatal),6 and two 
categories of pilot instrument rating (Instrument-rated vs. 
Non-instrument-rated). The data consisted of all pilots 
involved in U.S. GA accidents during the time period speci-
fied, regardless of whether the pilot in question appeared to 
be legally responsible for the accident.

6NTSB classifies a “serious” or “fatal” accident as one where at least 
one person onboard at least one airplane was seriously or fatally 
injured, respectively.

2

Figure 2. pdf with various values of and .

3

Table 1. Number of pilots (n) in the ijkth data test set 

         Time Period           (i) 1983-2000 2001-2011 

     Accident Category     (j) SERIOUS FATAL SERIOUS FATAL 

Instrument-rated pilots   (k)  n111=  362  n121=  831  n211=164  n221=465

Non-instrument-rated pilots  n112=1051  n122=1823  n212=328  n222=571

(3)
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The raw data were first aggregated into histograms 
with x-axis bins 100 TFH wide. To aid visual inspection, 
Appendix A shows one row of data fits using Eq. 3 and 
a second row using Eq. 1, where the log transform was 
performed prior to the data fit. The latter is included 
because that particular method makes it much easier to 
visualize the underlying functional fit differences.

RESULTS

Goodness of fit
As expected, both the log-transform of TFH and the 

inclusion of the location parameter d proved essential. 
Without the log-transform, parameter estimates failed to 
converge for nearly all datasets. And, without d, the same 
held true for instrument-rated pilot datasets. 

Even with the log-transform and d, however, beta 
functions rarely produced good data fits. Therefore, beta 
was eliminated from further consideration as a modeling 
function, and for the sake of parsimony, results are not 
shown here. The three remaining fitting functions and 
eight datasets produced 24 models. Appendix A shows 
these, with model performance and parameter estimates.

Model goodness-of-fit can be expressed by a variety of 
metrics. One of the simplest is the coefficient of determi-
nation R2, which varies between 0 and 1, and estimates 
the proportion of explained variance.

 

( )
( )∑

∑
=

=

−

−
−=−= n

i x

n

i xx

total

error

yy

fy
SS
SSR

1
2

1
2

2 11
 

Here, f
x
 represents the predicted value of y at x, versus 

the observed value of y
x
. Lower R2s merely reflect noisier 

data, not necessarily fitting failure.
Two aspects of the data affected both the size of R2 and 

the stability of model parameter estimates, as measured 
by the breadth of their confidence intervals. As expected, 
greater random variation (noise) in the data and smaller 
sample size (n

pilots
) both led to lower R2s. Binning the 

data, of course, helps dampen noise, but at the expense 
of lowering the effective sample size, which becomes the 
number of bins (n

bins
) rather than n

pilots
. Figure 3 shows 

that better results tended to occur with models based 

on n
pilots

 > 300, while little additional advantage resulted 
from n

pilots
 > 1000.

Confidence intervals for the underlying correlation 
r=Sqrt(R2) can be estimated using Fisher’s method (Glass 
& Hopkins, 1984, pp. 304-307).
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1
ln5.0tanhtanh

n
z

r
r

rzZr CI
zCI

 

where Z is Fisher’s Z-transform of r, s
z
 (sigma sub-z) is 

the standard error of Z, and z
CI

 is the normal z–value 
corresponding to the desired confidence interval (e.g., 
for .95CI, z

CI
 =1.96).

Based on R2, the gamma, log-normal, and Weibull 
pdfs all appeared reasonable candidates for use with this 
broad range of accident categories. Appendix A shows R2s 
ranging from .862-.994, considered good-to-excellent.

While it was possible to get Poisson models to converge, 
the R2s were uniformly and significantly lower than, for 
instance, those of Gamma (p

Wilcoxon
=.012), supporting 

exclusion of the Poisson from further consideration. Table 
2 compares the two.

The three remaining model classes can be statisti-
cally compared by setting up R2s as if each of the eight 
datasets were an “individual,” and the three models were 
repeated measures experienced by each “individual.” The 
three “Raw data” rows in Table 3 show the setup of this 
comparison.

4
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Figure 3. Plot of npilots (x-axis) versus resulting R2 (y-axis), 
with least-squares trend line. 
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Table 2. Comparing Poisson and Gamma R2s

Dataset 1 2 3 4 5 6 7 8 Mean Median 
Gamma .994 .940 .994 .932 .983 .946 .967 .864   .953    .957 
Poisson .890 .770 .880 .748 .929 .873 .892 .840   .853    .877 

(5)

Figure 3. Plot of npilots (x-axis) versus resulting R2 (y-axis), with 
least-squares trend line.

(4)
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Table 3. Comparing Gamma, Log-normal, and Weibull R2s

Dataset 1 2 3 4 5 6 7 8 Mean Median

Gamma 0.994 0.940 0.994 0.932 0.983 0.946 0.967 0.864  0.953   0.957

Log-normal 0.994 0.942 0.994 0.931 0.982 0.947 0.964 0.862  0.952   0.956Raw data 

Weibull 0.993 0.923 0.994 0.931 0.982 0.948 0.968 0.872 0.951   0.958

Gamma 2.903 1.738 2.903 1.673 2.380 1.792 2.044 1.309  2.093   1.918

Log-normal 2.903 1.756 2.903 1.666 2.351 1.802 2.000 1.301  2.085   1.901Z-transformed 

Weibull 2.826 1.609 2.903 1.666 2.351 1.812 2.060 1.341  2.071   1.936

Quick inspection of these raw R2s shows no prominent 
differences between modeling functions. Analysis of 
variance (ANOVA) can confirm that. But, first we have 
to consider that our theoretical distributions of of R2 are 
not expected to be normal, since R2 is range-restricted to 
0<R2<1.0. ANOVA is famously tolerant of some devia-
tion from normality, but these R2s are high, and might 
be a problem. Indeed, Monte Carlo simulation reveals 
considerable negative skewness, as Figure 4a illustrates.

We can correct that skewness using Fisher’s Z- 
transform, a variant of Equation 5:

 












−

+
= 2

2
2

1

1
ln5.0

R

R
Rcorrected

Figure 4b illustrates the resulting improvement in 
normality. Applying that method to all our R2s produces 
the bottom, “Z-transformed” half of Table 3, which we 
can now more legitimately analyze. 

Subsequent ANOVA reveals no significant differences 
between the gamma, log-normal, and Weibull R2s (p =.429, 
NS, Greenhouse-Geisser-corrected for non-sphericity).

One salient feature distinguishing the three model 
classes was the left-hand side of the curve. As Appendix 
A makes plain in ln(x)-space, Weibull pdfs tended to be 
“fatter” on the left, whereas gamma and log-normal pdfs 
tended to be more symmetrical and to resemble each 
other more closely. The exact nature of the leftmost, 
lowest-TFH end of these distributions is something that 
can be investigated more closely in future years, as data 
accumulate, allowing more reliable statistical analysis.

Final choice of a fitting function
Judging solely by R2 and x̃pdf, it would be imprudent 

to recommend one model over another on the grounds of 
theory. Arguably, though, the gamma pdf G

pdf
 is most useful 

for two reasons. To a lesser extent, experience with these 
data showed that G

pdf
 was the easiest function to fit. More 

compellingly, G
pdf

 allows calculation of confidence bands 
around the modeling function itself. These confidence bands 
provide estimates of the net stability of predictions based 
on each dataset. Appendix A shows how these confidence 
bands are influenced by dataset size n

ijk
, as intimated earlier 

by Figure 3. Smaller datasets are considerably less reliable.
For these pragmatic reasons, we choose to examine 

G
pdf

 in detail for the rest of this report.

7

 a b 
(skew = -0.815) (skew = -0.021) 

Figure 4. a) Frequency histograms for 1000 Monte Carlo-simulated R2s 
randomly generated by one of our Gpdf models. The y-axis shows the frequency 
count of R2s in each x-axis bin. Note the negative skew; b) Z-transform corrects 
this negative skew.

(6)



6     

Estimating parameter start values for G
pdf

The raw data show considerable noise. This produces 
lumpy parameter residual error spaces and the risk of 
optimization failure due to local minima. Numerical 
methods for G

pdf
 parameter estimates therefore benefit 

from having start values as close as possible to final values.
Estimates for α and b can be derived by the method 

of moments (see Appendix B for details).
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A start value for the amplitude term (A) can be esti-
mated as

 
( )( )

( )α
ββα ααβ

Γ
−

== −−− 11x
max

Mo,

max,
est e

y
y
y

A  

where, of the binned data, y
max

 is the maximum function 
height, and y

Mo
 is the height of the model G

pdf
 mode7(M

o
) of

 ( )βα 10 −=M  (10)

Finally, we can estimate the location parameter (d) by 
forcing the peaks of both the data and G

pdf
 to take the 

same x-value. This leads to

  (11)

In practice, the parameter spaces are lumpy enough so 
that occasional fit-failure can result, even with reasonable 
starting estimates (with these eight datasets, this happened 
once). If all else fails, this can be resolved by graphing out 
the fitting function for the log-transformed data, starting 
with the estimated parameters, then hand-manipulating 
them to better values by visual inspection. Figure 5 il-
lustrates this, using Mathematica’s Manipulate function, 
which allows function parameters to be adjusted with 
sliders, and immediately graphs the result.

7Assuming α >1, which all αs here are.

Parameter confidence intervals for G
pdf

Parameter confidence intervals can be estimated with 
methods based on the Student t-distribution

  (12)
where the ith parameter p

i
 is augmented or diminished by 

its standard error (SE
i
) times the value of t corresponding to 

n-p degrees of freedom and the desired 2-tailed significance 
level α (the acceptable Type-1, or false-positive statistical 
error rate, not to be confused with our α parameter in 
G

pdf
). With binned data, n will be the number of bins in 

each dataset, and p=4, the number of parameters in G
pdf

 
(i.e., A, α, b, d).

Estimates of the standard error SE
i
 are beyond the 

scope of this report. The reader is referred to Ratkowsky 
(1989, pp. 36-42) for a treatment of parameter confidence 
intervals. However, a number of common statistical 
and mathematical software packages (e.g., SPSS, SAS, 
MATLAB, Mathematica) will numerically estimate the 
appropriate standard errors.

Using G
pdf

For a given dataset, to estimate the expected accident 
count for a bin width of 100 TFH centered on a given 
value of x, simply populate Equation 3’s parameters 
from Appendix A and insert the desired value of x. 
For example, for non-instrument-rated pilots having 
fatal accidents from 1983-2000, inclusive, the da-
taset “1983-2000 NIR FATL,” Equation 3 becomes 

( ) ( )789.7
286.0)821.2)(ln(3.776

789.71789.7286.0)821.2)(ln(

Γ
−=Γ

−−−− xex
x

pdf

 
whose net frequency count at median TFH of x=340 is 
G

pdf
(xp̃df)	Gpdf 

(340)≈193, which we can see is correct from 
its plot (Figure 6).

Quantizing G
pdf

Appendix A shows the actual median (0.5 quantile) 
of G

pdf
. It is also useful to have a method for dividing 

fitted data into arbitrary quantiles that can be precisely 
calculated, for instance, into groups containing equal 
percentages of area under the fitting curve G

pdf
. Equation 

14 shows a method for non-log-transformed data, which 
is based on the definite integral of G

pdf
 (Eq. 3) from x=ed 

to x
qn

, the x-value corresponding to a desired quantile 
q

n
 (e.g., 0.8), the corresponding area under the curve, 

represented as

  (14)

(7)

(8)

(9)

Modatabinnedmax,est xx 

1

)2/1,( α−−±= pniiiCI tSEpp

1

( )∫Γ=
qnx

e
pdfn dxxq

δ

δβα ,,,

(13)
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Figure 6. Model pdf for dataset “1983-2000 NIR FATL.” The dashed line denotes the 
median xp̃df.

Figure 6. Model Gpdf for dataset “1983-2000 NIR FATL.” The dashed line denotes the median x̃pdf.
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Figure 5. top) The single dataset where estimated starting parameters (shown) led to fit-
failure; bottom) Slight manual adjustment of those initial estimates led to subsequently 
successful fit. 

Figure 5. (top) The single dataset where estimated starting parameters (shown) led to fit-failure; bottom) 
Slight manual adjustment of those initial estimates led to subsequently successful fit.
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There is no closed-form solution for arbitrary x
qn

. 
Fortunately, an iterative numerical method is easily 
stated. We note that the minimum value of G

pdf
 = 0 

in the linear domain is specified by x=ed, and that we 
normalize the area under G

pdf
, given that it computa-

tionally represents n pilots put into bins 100 FH wide.

1

cnpilots

x

e
pdfqn qndxx εε

δ

<−









Γ=→ ∫ 100

 
In other words, start with an arbitrary value for x, 

integrate G
pdf

 (Eq. 3) to find the area under the curve 
from ed to x, next calculate the error e between that 
area and our desired quantile, and then adjust x in the 
direction that minimizes e, halting when e falls below a 
critical tolerance value e

c
 (epsilon sub-c). This is easily 

done with software such as Mathematica, given a simple 
statement such as

FindArgMin[Abs[(NIntegrate[Gpdf[x],{x,Ed,mu}]/
(100*n))-qn],{mu,Quantile[data,qn] }][[1]];8

The data of Figure 6 produce the plot for e:

Naturally, the minimization algorithm will oscillate 
around the discontinuity, but this poses no practical 
problem to finding an accurate solution for the median.

A conservative appraisal of model accuracy at ex-
treme x-values 

Extensive experience with “extreme” datasets, such as 
the ones encountered here, teaches us to be wary of what 
otherwise may seem like high-precision modeling at very 

8Here, Quantile[data,qn] is just a specification to the function 
FindArgMin, telling it to find the minimum of |(Gpdf(x)/100n)-qn|, 
starting at x-value mu, specified as the desired quantile of the raw 
data, which Mathematica conveniently has a built-in function to find.

low and very high values of x (here being TFH). Often, 
we find that conservative interpretation works best. In 
other words, we consciously choose to limit high “logical 
confidence” in predicted accident frequency to a middle 
range of, say, 50-5,000 TFH.

The roots of this conservativism are grounded in model 
construction, sampling, and residual error spaces. Residual 
error is, of course, the average squared difference between 
the ys our model predicts, given the x-values of the data. 
Total residual error is the quantity we wish to minimize 
by adjusting our model parameters. Now, what we some-
times see is that this residual error can be minimized pretty 
well by a range of models, all of which provide a pretty 
good fit to most of the data. This happens when we have 
a complex residual error landscape with many local hills 
and valleys (as opposed to a simple, monotonic landscape 
with just one deep, global minimum).

The exact geometry of the error space is, of course, 
largely dictated by the data. But, it is also a function of 
the model and of how the data are set up. For instance, 
suppose we have two accidents, one at 15,000 TFH, 
the other at 15,050 TFH. In that event, the error space 
very much depends how wide our sampling bins are and 

where each bin starts and finishes on x. In the very long 
right-hand tail of data like ours, the typical actual ac-
cident frequency bin count is going to be 0. But, if our 
bins are wide along x, or spaced in a certain way on the 
x-axis, instead of getting two bins, each 1 unit high, we 
can end up with one bin 2 units high. Amidst a sea of 
bins 0 units high, the residual error of this 2-accident 
bin will be almost (2-0)2 = 4, as opposed to the 2(1-0)2 
= 2 units it would otherwise be.

The point is that the right-hand tail of distributions 
like these can become “logically unreliable.” Most bins 
in the long right-hand tail will contain zero cases. Con-
sequently, the farther out on the x-axis a non-zero bin is, 

10

xqn

Figure 7. Plot of Eq. 15 for “1983-2000 NIR FATL,” here 
minimizing at the median xqn = xp̃df.

Figure 7. Plot of Eq. 15 for “1983-2000 NIR FATL,” here minimizing at the 
median xqn = xp̃df.

 (15)
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the greater its effect on model parameters. That makes 
the far end of a long-tailed distribution less trustworthy 
than we would like it to be.

The left-hand end of this kind of distribution is also 
somewhat troubled, as we can see from the confidence 
intervals in Appendix A. Many of these confidence in-
tervals tend to be wide on the left, which also happens 
to be a region of relatively few accidents. The very lowest 
TFH bin is often not far removed from the very tallest, 
in which case a small d shift in the curve to the right 
or left, can accompany a large change in the amplitude 
parameter A, and/or a large shift in α and/or b. All this 
goes to show that highly sloped frequency distributions 
can sometimes be represented by a multiplicity of pretty 
good models which, nonetheless, may vary widely in pa-
rameter estimates, which differ most in their predictions 
at extreme values of x.

Therefore, as stated previously, we are prudent to put 
our greatest faith in the middle TFH ranges for these 
models, perhaps in the 50-5,000 TFH range. Fortunately, 
that is the range most interesting to most of us under 
most circumstances, because it captures the vast majority 
of accidents.

DISCUSSION

Figure 8a shows a frequency histogram commonly 
seen in general aviation (GA) accident analysis, namely 
accident count as a function of pilots’ total flight hours 
(TFH). A modeling function would be useful to smooth 
the noise in such data, allowing investigators to better 
predict how likely pilots of a given experience level are to 
be involved in accidents. This would be useful, for instance, 
in allocating resources for pilot training or mentoring, 
and as the basis for a statistical covariate of flight risk.

In this report we tested a number of candidate mod-
eling functions on eight samples of NTSB GA data 
encompassing the years 1983-2011. Appendix A shows 
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Figure 8. Frequency histograms of GA fatal accident count (y-axis) with a) untransformed, and b) natural log (ln)-
transformed x-axis (which eventually proved essential to successful data-fitting).

that the gamma, log-normal, and Weibull probability 
density functions were all able to fit such data, given x-axis 
data bins 100 TFH wide. Estimates of goodness-of-fit 
(R2) ranged from .86-.99 (good-to-excellent) and did 
not differ significantly across those three model classes.

Log-transformation of TFH proved critical to the 
success of these data-fits. Untransformed TFH (e.g., Fig. 
7a) frequently led to catastrophic fit-failure.

The raw data exhibited an extremely long right-hand 
tail, due in part to pilot aging and dropout, but also to 
the confound of relatively few pilots having large num-
bers of commercial FH rolled into their GA TFH. The 
log-transform (Fig. 8b) effectively compressed this “long 
tail,” allowing successful data-fit.

Although log-normal and Weibull functions appeared 
capable of fitting these data, there is some pragmatic 
advantage to using a gamma pdf (Equation 3). A gamma 
pdf allows estimation of confidence intervals around the 
fitting function itself (.95CI, Fig. 8b). The width of these 
confidence intervals, of course, is both a function of the 
sample size and inherent noise in the data.

Due to the nature of the data, it may be advisable to 
place the greatest prediction confidence in a middle range 
of TFH, perhaps from 50-5,000. Fortunately, that is also 
the range that captures the vast majority of all GA pilots.

Because more than one function class seems capable 
of fitting these data, no simple theoretical claims can 
be made about causation. Causation certainly involves 
multiple processes, some perhaps embodying sums of 
independent exponential decay processes (gamma), 
“failure rate” processes (Weibull), and multiplicative 
random processes (log-normal). Theorizing is hampered 
by a host of factors, such as the confounding of relatively 
safer commercially logged flight hours counted as TFH, 
the dropout of non-instrument-rated pilots to become 
instrument-rated, and that some phases of flight are more 
dangerous than others, meaning that flight risk is not 
merely linearly proportional to time spent aloft.
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Therefore, the goal of the current effort is largely 
atheoretical, being merely to show that such data can be 
modeled. With some care, GA accident frequencies can be 
predicted from TFH, given data parsed by a) pilot instru-
ment rating and b) seriousness of accident. Goodness-of-fit 
(R2) tended to be excellent for non-instrument-rated pilot 
data and good for instrument-rated data. Estimates of 
median TFH were derived for each dataset, which will 
be useful to aviation policy makers.
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APPENDIX A

 Comparing data fits for the eight datasets of Table 1. The x-axis represents TFH, the y-axis is accident 
frequency count. Dashed vertical lines show x̃TFH, the median value of TFH dividing the area under the modeling 
curve area in half. A .95CI brackets each gamma pdf. The first row of models has a linear x-axis, the second row 
has a ln(x)-axis, which allows easier inspection of data fits between model classes.

Model Class
 Gamma Log-Normal Weibull
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npilots=1823 R2=0.994 xT̃FH=340 npilots=1823 R2=0.994 x̃TFH=340 npilots=1823 R2=0.993 xT̃FH=334 
 Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper
A  776.3 765.8   786.8 A  777.1 766.9   787.4 A  782.0 767.2   796.9 
     7.789     5.996       9.572      1.230     1.118       1.343      1.721     1.646       1.795 
     0.286     0.253       0.319      0.228     0.204       0.250      1.431     1.376       1.486 
     2.821     2.559       3.085      1.533     1.151      1.915      3.786     3.746       3.826 
r      0.9968     0.9965       0.9971 

 

r      0.9969     0.9966       0.9972 r      0.9964     0.9960       0.9967
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npilots=831 R2=0.940 xT̃FH=1135 npilots=831 R2=0.942 x̃TFH=1142 npilots=831 R2=0.923 xT̃FH=1131
Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper

A    92.30   88.87   95.73 A    91.57   88.35     94.79 A    95.33   89.58   101.1 
     4.902     3.189     6.616      0.500     0.360       0.640      2.217     1.819       2.614 
     0.311     0.252     0.369      0.389     0.336       0.442      1.636     1.311       1.962 
     5.011     4.730     5.291      4.787     4.552       5.022      5.011     4.656       5.365 
r      0.9694     0.9650     0.9732 

 

r      0.9706     0.9664       0.9743 r      0.9607     0.9551       0.9656 



A2     
13

 Gamma Log-Normal Weibull 
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npilots=1051 R2=0.994 xT̃FH=312 npilots=1051 R2=0.994 xT̃FH=313 npilots=1051 R2=0.994 xT̃FH=307 
Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper

A  472.4 465.5   479.2 A  472.4 465.6    479.2 A  475.8 466.6    485.0 
     8.322     6.163     10.48      1.266     1.133        1.398      1.746     1.667        1.825 
     0.271     0.236       0.306      0.216     0.189        0.243      1.418     1.361        1.475 
     2.776     2.476       3.077      1.396     0.930        1.861      3.780     3.738        3.822 
rA    0.9968     0.9964       0.9972 

 

rA     0.9968     0.9964        0.9972 rA     0.9968     0.9964        0.9972
AThe equality of values for r=0.9968 across distributions here is simply a coincidence. 
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npilots=362 R2=0.932 xT̃FH=1067 npilots=362 R2=0.931 xT̃FH=1063 npilots=362 R2=0.931 xT̃FH=1064
Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper

A    42.12   39.85     44.38 A    42.36   40.07      44.65 A    42.35   39.61      45.09 
   10.33     2.150     18.51      1.226     0.765        1.687      2.397     1.878        2.916 
     0.208     0.126       0.289      0.193     0.109        0.277      1.644     1.260        2.028 
     4.357     3.449       5.266      3.023     1.434        4.611      5.011     4.600        5.421 
r      0.9653     0.9575       0.9717 

 

r      0.9651     0.9572        0.9715 r      0.9650     0.9571        0.9715
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 Gamma Log-Normal Weibull 
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npilots=571 R2=0.983 xT̃FH=421 npilots=571 R2=0.982 xT̃FH=421 npilots=571 R2=0.982 xT̃FH=424 
Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper

A  219.7 213.5   226.0 A 219.7 213.5    225.9 A  231.2 207.5    218.9 
    17.94     5.006     30.87      1.611     1.305        1.916      2.083     1.855        2.309 
     0.216     0.141       0.290      0.179     0.128        0.230      1.921     1.704        2.138 
     1.203     0       2.695      0   -1.534        1.534      3.422     3.207        3.636 
r      0.9914     0.9899       0.9927 

 

r       0.9912     0.9896        0.9925 r      0.9912     0.9896        0.9925
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npilots=465 R2=0.946 xT̃FH=1241 npilots=465 R2=0.947 xT̃FH=1212 npilots=465 R2=0.948 xT̃FH=1218
Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper

A     54.03   51.70     56.37 A   55.87   53.41      58.34 A    55.15   52.87      57.43 
    14.27   4.592     23.96      1.840     1.351        2.330      2.380     2.099        2.660 
     0.218     0.146       0.289      0.132     0.071        0.193      2.027     1.775        2.279 
     3.288     2.148       4.429      0    -3.104        3.105      4.568     4.303        4.833 
r      0.9726     0.9672       0.9771 

 

r       0.9732     0.9679        0.9776 r      0.9736     0.9684        0.9779
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 Gamma Log-Normal Weibull 
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npilots=328 R2=0.967 xT̃FH=455 npilots=328 R2=0.964 xT̃FH=456 npilots=328 R2=0.968 xT̃FH=455 
Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper

A    113.9 109.2   118.7 A 113.9 109.1    118.7 A  112.2 107.6    116.8 
    32.82    -4.546     70.19      1.637     1.258        2.016      2.635     2.188        3.081 
     0.158     0.071       0.246      0.172     0.110        0.234      2.396     1.972        2.821 
     0    -3.082       3.082      0    -1.947        1.947      3.066     2.635        3.497 
r      0.9831     0.9791       0.9864 

 

r       0.9817     0.9773        0.9853 r      0.9841     0.9803        0.9872
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npilots=164 R2=0.864 xT̃FH=1010 npilots=164 R2=0.862 xT̃FH=992 npilots=164 R2=0.872 xT̃FH=1024
Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper  Parameter .95CIlower .95CIupper

A   24.78  22.97     26.59 A   26.11   23.58      28.64 A    24.00   22.67      25.33 
    5.383    1.285       9.482      1.786     0.841        2.731      1.547     1.390        1.703 
    0.376    0.233       0.518      0.152     0.021        0.283      1.396     1.282        1.509 
    4.115    3.248       4.982      0    -5.711        5.711      4.936     4.851        5.022 
r      0.9295    0.9051       0.9477 

 

r       0.9283     0.9035        0.9468 r      0.9336     0.9106        0.9508
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APPENDIX B 

 Estimates for the gamma pdf’s parameters  and  can be calculated using the method of 
moments. The expected value (mean, or first population moment) of the gamma pdf is 

)(xE  (16) 
while the second population moment is 

  22 1)(  xE  (17) 

 From our data, we can estimate the first moment as 

n
x

m
n

i i  1
1  (18) 

and the second moment as 

n
x

m
n

i i  1
2

2  (19) 

where the binned data have been shifted to start at zero by subtracting the x-value of the first bin from all 
others.
 Letting 

1m  (20) 
and   2

21 m   (21) 
we can solve for  and  as 

2
12

2
1
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m


  (22) 

1

2
12

m
mm 

  (23) 

 Now, using these estimates for  and , plus the expected x-value for the mode (xMo) of the pdf, 

  1Mo  (24) 

plus ymax, the maximum observed y-value in the data, the amplitude term (A) can be estimated as 
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